

Cyber-Physical Modeling and Analysis for a Smart and Resilient Grid

(Open FOA 670-5143)

Peter W. Sauer

January 14, 2015

Project Objectives (1)

Vision: Improve operational resiliency in the face of cyber threats

Objectives:

- Fuse information from cyber network and physical power network to improve security and reliability of the grid
- Produce concrete analysis that quantifies how cyber risks can have a real and significant impact
- Help organizations better evaluate threats and develop countermeasures
- Approach: Combined modeling and analysis of the cyber-physical system rather than dealing with them separately
 - Managing their resiliency separately worked reasonably well for random or accidental faults and failures

Project Objectives (2)

Challenges:

- Identifying cyber-physical dependencies that need to be captured
- Modeling cyber-physical threats and level of detail needed
- Coming up with a modeling and analysis framework
 - efficient, useful

Outcomes:

- Cyber-physical models and analysis tools
 - model of connections and dependencies of cyber and physical systems
 - account for impact of cyber threats on grid reliability
 - What-if scenario analysis and prioritization of systemhardening and security patching efforts
 - Target Application: Contingency Analysis

Concept Overview (1)

Concept Overview (2)

Cyber-Physical Security Analysis (CyPSA)

Team

- University of Illinois
 - Robin Berthier
 - Kate Davis
 - David Nicol
 - Edmond Rogers
 - Bill Sanders
 - Pete Sauer
- Oregon State University
 - Rakesh Bobba
- PowerWorld Corp.
 - Matt Davis
- Rutgers University
 - Saman Zonouz

- Interdisciplinary Team
 - Power System Modeling & Analysis (Pete, Kate, Matt)
 - System Security (Rakesh, Robin, Saman, David, Edmond)
 - Cyber System Modeling & Analysis (David, Bill, Saman)
 - Reliability (Bill, Robin)
- Technology Transition Enablers
 - PowerWorld
 - Network Perception
 - TCIPG Industry Relations

- Development of a small synthetic cyber-physical model to facilitate analysis algorithm development and testing
 - 8-susbstation system with associated cyber control network
 - helped development of a language to capture cyber-physical models - Cyber-Physical Topology Language (CPTL)
- Threat model in the form of attack graph (s) reviewed by industry experts
- Development of scalable algorithms for analysis model generation
- Initial prototype of CyPSA framework able to analyze the synthetic cyber-physical model

Development

Automated Model Generation

Integrated Functional Solution: CyPSA

Tool Configuration

Scalable Real-Time Analysis

Model generation optimization resulted in much smaller models and improved performance significantly

Branch-Depth Limit		Analysis Time	Finished Analysis?
5	Increasing – accuracy –	6 s	yes
10		6 s	yes
15		9 s	yes
20	I WHALS POSSIBLE	1 min	yes

Algorithm 1: Cyber-Physical Contingency Selection Input: MDP, current_state, deadline Output: [ContigencyList] 1 List B ← Ø: 2 Queue Q ← Ø: $Color[s] \leftarrow White;$ $F(s) \leftarrow \sum_{l \in L} \left[\max \left\{ \frac{f_s(l)}{f_s^{MAX}(l)} - 1, 0 \right\} \right]^2;$ $I(s) \leftarrow \max_{a \in A(s)} \{ \gamma \cdot \hat{\sum}_{s' \in S} P(s'|s, a) [\Delta F(s, s') + I(s')] \}$ 9 Enqueue(Q, current_state); 10 while $(get_time() \le deadline)$ and $(Q \ne \emptyset)$ do $s \leftarrow Dequeue(Q);$ $R(s,a) \leftarrow \sum_{s' \in S} P(s'|s,a) [\Delta F(s,s') + I(s')];$ Insert(B, [R(s,a), s, a]);Concatenate(ContigencyList, B); for $b \in B$ do if $Color[s'_{b.s,b.a}] = White then$ $Color[s'_{b,s,b,a}] \leftarrow Gray;$ Enqueue(Q, $s'_{b.s,b.a}$); $Color[s] \leftarrow Black;$

Optimized grid model

- Getting real cyber-physical models
 - working with a small utility
- Right level of model abstraction
 - useful analysis results
 - tractable
- Scaling analysis to deployed system sizes

- Identifying the right use-cases and associated performance requirements
 - n-1-1
 - proximity to cascading outages
 - what-if scenarios

Going Forward ...

- Testing with real cyber-physical models
- Scalability of the analysis
- Validation and demonstration of technology in lab/field settings
- Identifying key use-cases and target group in Utilities for tech transition

Technology-to-Market

- Open to multiple T2M paths (e.g., partners, license, start-up) at this stage
- Key Partners/Commercialization Channels
 - PowerWorld Corp. and Network Perception
- Targeting "Operations Technology (OT)" group in utilities
 - Ideally converged OT and IT group

T2M Accomplishments

- Outreach/Presentations
 - Presentation at GridSecCon (October 2014)
 - Presentation at UNITE (March 2014)
 - Presentation to Association of Illinois Electric Cooperatives (October 2014)
 - Presentations at a PSERC meeting and Illinois Power Affiliates meeting (May 2014)
- Engagements-in-the-works
 - Small city utility as an initial test partner
 - Potential participation in GridEx 2015

Post ARPA-E Goals

- Seek funding to
 - develop validated prototype into a commercial product
 - support development workload to tailor the tool to the needs of initial customers
- Scalability/Accuracy trade-off is expected to be the risk for large-scale adoption

Conclusions

- Potential for significant improvement in system resiliency in the face of cyber threats (both accidental and induced)
 - Co-analyze both cyber and power infrastructures
 - Capture inter-dependencies
- Many challenges need to be overcome
 - Getting data
 - Right modeling abstraction and analysis framework
 - Right use-cases / applications
 - Utility/system operator buy-in

